Режимы мышечных сокращений. Эффективность мышечного сокращения

Различают несколько форм и типов мышечных сокращений.

1. Динамическая форма мышечного сокращения. При таком типе сокращений изменяется длина мышцы, но не изменяется напряжение. Эта форма включает два типа:

а) Изотонический тип или концентрационный (мышца укорачивается, но не изменяет своего напряжения). Например, ходьба.

б) Эксцентрический тип. Если нагрузка на мышцу больше, чем ее напряжение, то мышца растягивается. Например, при опускании тяжелого предмета.

2 Статическая форма мышечного сокращения. Эта форма наблюдается при поддержании позы или преодолении силы земного притяжения.

Данная форма включает один тип мышечного сокращения – изометрический. При изометрическом сокращении мышца изменяет свое напряжение, но не изменяет длины.

3. Форма ауксотонического сокращения или смешанная.

Деление на формы и типы мышечных сокращений является условным т.к. все сокращения являются смешанными. Однако преобладает какой-то один тип.

Режимы сокращения мышц.

Характер или режим сокращения мышцы зависит от частоты импульсов, которые поступают от мотонейрона.

Выделяют одиночные и тетанические мышечные сокращения.

Если на мышцу подействовать одиночным импульсом, то происходит одиночное мышечное сокращение , в котором выделяют несколько фаз:

1. Латентный (скрытый) период – время после действия раздражителя до начала сокращения.

2. Фаза укорочения (при изотоническом сокращении) или фаза напряжения (при изометрическом сокращении).

3. Фаза расслабления.

Одиночное мышечное сокращение характеризуется не значительной утомляемостью, но при этом мышца не способна реализовать свои возможности.

Тетаническое мышечное сокращение. Если на мышечное волокно воздействуют два быстро следующих друг за другом импульса, то сокращения накладываются и возникает сильное сокращение.

Наложение двух следующих друг за другом импульсов называется суммацией.

Выделяют два вида суммации:

1. Если второй раздражитель поступает в момент, когда мышца начала расслабляться, то кривая имеет вершину отдельную от вершины первого сокращения. Этот вид суммации называется неполной.

2. Если второй раздражитель поступает в момент, когда сокращение мышцы еще не дошло до вершины т.е. мышца не начала расслабляться, то оба сокращения сливаются в единое целое. Этот вид суммации называется полной.

Длительное и сильное сокращения мышцы, под влиянием ритма импульсов с последующим расслаблением называется тетанусом. У человека тетанус можно получить при частоте 50-70 имп/сек.

Выделяют два вида тетануса:

1. Зубчатый. Возникает при малой частоте подачи импульсов (до 150 имп/cек).

2. Гладкий. Возникает при высоком ритме подачи импульсов (более 150 имп/cек).

При этом различают оптимальный и пессимальный ритмы работы мышцы.

Так, если частота подачи и сила импульсов вызывает максимальный сократительный эффект, то это оптимальный ритм работы. Оптимальный ритм работы формируется через фазу экзальтации (т.е. супернормальности).

Если частота подачи импульсов и сила раздражителя слишком велики, то это вызывает снижение силы сокращения. Такой ритм называется пессимальным. Этот ритм работы мышцы формируется через фазу абсолютной рефрактерности.

При выполнении силовых упражнений в различных режимах их работы.

Определение

Изометрический режим работы мышц

Преодолевающий режим работы мышц (концентрический режим работы мышц)

Мышца работает в преодолевающем режиме , если ее длина уменьшается . Как пример — сгибание руки в локтевом суставе, удерживая в руке гантель. Преодолевающий режим является работы мышц. При работе в этом режиме усилие, развиваемое мышцами больше внешней силы (правильнее, конечно, говорить, что момент силы, развиваемый мышцами, больше момента внешней силы). Мышца как бы «преодолевает» внешнюю нагрузку. В англоязычной литературе этот режим сокращения мышцы называется концентрическим .

Уступающий режим работы мышц (эксцентрический режим работы мышц)

Мышца работает в уступающем режиме , если ее длина увеличивается . Как пример — разгибание руки в локтевом суставе, удерживая в руке гантель. Уступающий режим является разновидностью динамического режима . При работе в этом режиме развиваемое мышцей усилие меньше момента внешней силы (правильнее говорить момент силы мышц меньше внешнего момента силы). Мышца как бы «уступает» внешней силе. В англоязычной литературе этот режим называется эксцентрический режим работы мышц.

Различные режимы работы мышц иллюстрируют рис.1 и рис.2.

Следует обратить внимание на тот факт, что мышцы-антагонисты при выполнении движения работают в различных режимах. Например, при сгибании руки мышцы-сгибатели укорачиваются (преодолевающий режим), а мышцы-разгибатели (их антагонисты) — удлиняются (уступающий режим).

Изменения, происходящие в мышцах непосредственно или сразу после тренировочного занятия (срочный эффект тренировки)

Многочисленными исследованиями доказано, что выполнение физических упражнений в эксцентрическом (уступающем режиме, когда мышца удлиняется) режиме вызывает бо льшие структурные повреждения мышечных волокон , чем другие режимы сокращения мышцы. Эти повреждения затрагивают в первую очередь Z-диски саркомеров , а также белки цитоскелета.

С биохимической точки зрения эксцентрические упражнения (упражнения, выполняемые в эксцентрическом режиме) представляют для организма значительно бо льший стресс, чем упражнения, производимые в других режимах: уровень креатинкиназы в крови (фермента, содержащегося в мышечных волокнах и выделяющегося в кровь при их разрушении) при работе в эксцентрическом режиме значительно превышает соответствующий показатель при работе в концентрическом (преодолевающем) и изометрическом режимах.

Если измерить силу мышц после выполнения упражнений в эксцентрическом режиме, то окажется, что она уменьшается значительно больше, чем при выполнении упражнений в концентрическом режиме. О чем это говорит? Это говорит о том, что в эксцентрическом режиме повреждено больше мышечных волокон.

Изменения, происходящие в мышцах после длительного применения физических упражнений (кумулятивный тренировочный эффект)

Показано, что долговременная адаптация скелетных мышц к упражнениям, выполняемым в эксцентрическом режиме, проявляется в несколько бо льшей гипертрофии скелетных мышц по сравнению с другими режимами. Силовые тренировки в эксцентрическом режиме приводят к увеличению силы и жесткости скелетных мышц.

При выполнении силовых упражнений в изометрическом режиме увеличивается степень перекрытия мышечных и сухожильных волокон, несколько утолщается сухожилие и увеличивается площадь прикрепления сухожилия к кости. Именно поэтому рекомендуется в конце тренировки выполнять упражнения в изометрическом режиме (около 15 минут). Считается, что это позволяет уменьшить количество травм опорно-двигательного аппарата человека.

Если мышца сокращается в динамическом режиме (концентрическом или эксцентрическом режимах), в ней через некоторое время увеличивается длина мышечных волокон и уменьшается длина сухожилия . Компьютерное моделирование (U. Proske, D.L. Morgan, 2001) подтвердило целесообразность удлинения мышечной части и укорочения сухожильной. Авторами показано, что долговременная адаптация к выполнению эксцентрических упражнений проявляется в увеличении количества саркомеров в миофибриллах мышечных волокон и уменьшении сухожильной части . Это приводит к изменению оптимальной длины мышцы при развитии активного напряжения.

При выполнении силовых упражнений в динамическом режиме (концентрическом или эксцентрическом) возрастает количество нервных волокон , иннервирующих скелетную мышцу (в 4-5 раз больше, чем в изометрическом режиме).

Литература

1. Самсонова А.В, Барникова И.Э., Азанчевский В.В. Влияние силовых тренировок, выполняемых в различных режимах сокращения, на гипертрофию скелетных мышц человека // Труды каф. биомеханики. Сб. статей /Под ред. А.В.Самсоновой. В.Н.Томилова.- СПб, 2010.- С. 115-131.

Эффективность двигателя или автомашины рассчитывают как процент потребляемой энергии, которая превращается в работу вместо тепла. В мышцах количество энергии, способной превращаться в работу, даже при наилучших условиях составляет менее 25% всей энергии, доставляемой к мышце (химической энергии питательных веществ), а остальная энергия превращается в тепло. Причина этой низкой эффективности связана с тем, что примерно половина энергии питательных веществ теряется во время образования АТФ, и только 40-45% энергии самой АТФ может позднее превратиться в работу.

Максимальная эффективность реализуется лишь при условии сокращения мышцы с умеренной скоростью. При медленном сокращении мышцы или без какого-либо ее укорочения во время сокращения освобождается небольшое количество поддерживающего тепла, хотя работа практически не выполняется, что снижает эффективность преобразования до нуля. Напротив, если сокращение слишком быстрое, большая доля энергии используется на преодоление вязкого трения внутри самой мышцы, и это также снижает эффективность сокращения. Обычно максимальная эффективность развивается, когда скорость сокращения составляет около 30%.

Многие особенности сокращения мышцы можно продемонстрировать на примере одиночных мышечных сокращений. Такие сокращения вызывают с помощью одиночного электрического возбуждения, иннервирующего мышцу нерва, или короткого электрического раздражения самой мышцы, что ведет к развитию одиночного сокращения, продолжающегося долю секунды.

Изометрическое и изотоническое сокращение . Мышечное сокращение называют изометрическим, если мышца не укорачивается во время сокращения, и изотоническим - если мышца укорачивается, но ее напряжение на протяжении всего сокращения остается постоянным.

В изометрической системе мышца сокращается без уменьшения своей длины, а в изотонической системе мышца укорачивается против фиксированной нагрузки: мышца поднимает чашу весов с разновесом. Изометрическая система строго регистрирует изменения силы самого мышечного сокращения, а параметры изотонического сокращения зависят от нагрузки, против которой мышца сокращается, а также от инерции нагрузки. В связи с этим при сравнении функциональных особенностей различных типов мышц чаще всего используют изометрическую систему.

Особенности одиночных изометрических сокращений , зарегистрированных от разных мышц. В теле человека имеются много мышц разного размера - от очень маленькой стременной мышцы в среднем ухе, длиной в несколько миллиметров и диаметром около 1 мм, до очень большой четырехглавой мышцы, в 500000 раз крупнее стременной. При этом диаметр волокон может быть маленьким (10 мкм) или большим (80 мкм). Наконец, энергетика мышечных сокращений значительно варьирует от одной мышцы к другой. Поэтому не удивительно, что механические характеристики сокращений разных мышц различаются.

На рисунке показаны кривые регистрации изометрических сокращений трех типов скелетных мышц: глазной мышцы (длительность изометрического сокращения менее 1/40 сек), икроножной мышцы (длительность сокращения около 1/15 сек) и камбаловиднй мышцы (длительность сокращения примерно 1/3 сек). Интересно, что эти длительности сокращений приспособлены к функциям соответствующих мышц. Движения глаз должны быть чрезвычайно быстрыми, чтобы поддерживать фиксацию глаз на объекте для обеспечения ясного видения. Икроножная мышца должна сокращаться умеренно быстро, чтобы обеспечить скорость движения нижней конечности, достаточную для бега или прыжков. А камбаловидная мышца имеет дело в основном с медленными сокращениями для непрерывной длительной поддержки тела против силы тяжести.

Быстрые и медленные мышечные волокна . Как обсуждается в предыдущих статьях, посвященных спортивной физиологии, каждая мышца тела состоит из совокупности так называемых быстрых и медленных мышечных волокон, а также других волокон с переходными свойствами. В состав быстрореагирующих мышц входят в основном быстрые волокна и лишь небольшое число медленных. И наоборот, медленнореагирующие мышцы составлены главным образом из медленных волокон. Различия между этими двумя типами волокон следующие.

Быстрые волокна : (1) крупные волокна, обеспечивающие большую силу сокращения; (2) имеют хорошо развитый саркоплазматический ретикулум для быстрого выделения ионов кальция, инициирующих сокращение; (3) содержат большое количество гликолитических ферментов для быстрого освобождения энергии путем гликолиза; (4) имеют сравнительно бедное кровоснабжение, поскольку окислительный метаболизм имеет второстепенное значение; (5) содержат немного митохондрий также в связи со второстепенностью окислительного метаболизма.

Медленные волокна : (1) более мелкие волокна; (2) иннервируются также более мелкими нервными волокнами; (3) имеют хорошо развитую систему кровеносных сосудов и капилляров для доставки большого количества кислорода; (4) содержат значительно больше митохондрий для обеспечения высоких уровней окислительного метаболизма; (5) содержат большое количество миоглобина - железосодержащего белка, подобного гемоглобину эритроцитов. Миоглобин связывается с кислородом и хранит его до момента, когда в нем возникнет потребность (это также значительно увеличивает скорость транспорта кислорода в митохондрии). Миоглобин придает медленным волокнам красноватый вид, поэтому их называют красными волокнами, а из-за дефицита красного миоглобина в быстрых волокнах их называют белыми волокнами.

Изометрическое сокращение Изотоническое сокращение

Человеку, занимающемуся различными физическими упражнениями, а тем более, тренирующемуся самостоятельно, полезно знать о том, как происходит сокращение целой мышцы .

Мышцы способны развивать максимальное усилие , когда они не сокращены или сокращены в незначительной степени . При изометрическом сокращении мышца напрягается, но не укорачивается. То есть, изометрическое сокращение осуществляется, когда два конца мышцы удерживаются раздельно на фиксированном расстоянии, и стимуляция вызывает развитие напряжения в мышце без изменения ее длины. Примером изометрического сокращения может быть удерживание штанги .

При изометрическом сокращении почти все мостики между актиновыми и миозиновыми волокнами образуются сразу, так как нет необходимости в образовании новых связей на новых местах, поскольку мышца не укорачивается. Поэтому мышца может развить большее усилие .

При изотоническом сокращении мышца укорачивается, не теряя напряжения . осуществляется, когда один конец мышцы свободен для движения, и мышца укорачивается, в это время развивая постоянную силу. Примером изотонического сокращения может быть подъем штанги . Только при очень быстрых движениях усилие может быть относительно небольшим.

Зависимость мышечного усилия от скорости сокращения мышцы объясняется функционированием отдельного саркомера. При быстром сокращении мышцы перемещаются очень быстро. Это предполагает, что в каждый момент времени должно распадаться определенное количество мостиков между нитями актина и миозина с тем, чтобы они могли возникнуть на новых местах. В результате может развиться относительно слабое усилие .

В действительности большая часть сокращений включает в себя оба элемента .

Итак, теперь мы имеем представление о том, что такое изометрическое сокращение мышцы , изотоническое сокращение мышцы, а также о сокращении целой мышцы . При изометрическом сокращении мышца напрягается, но не укорачивается. При изометрическом сокращении мышца может развить большее усилие . При изотоническом сокращении мышца укорачивается, не теряя напряжения . Большая часть сокращений включает в себя оба элемента .

Ознакомиться с обзором скелетных мышц очень полезно. Рекомендую! Читайте .

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку и хвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки ), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ) . ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей , мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

• Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса .

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Изменение длины мышцы показано синим цветом, потенциал действия в мышце - красным, возбудиумость мышцы - фиолетовым.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов ), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1. Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.